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With vast changes in spacecraft development over the last decade, a new, cheaper 

approach was needed for deployable kinematic systems such as parabolic antenna 

reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, 

with incremental redesigns utilized to save packaging size. These systems are typically 

over-constrained designs, the assumption being that high reliability necessary for space 

operations requires this level of conservatism. But with the rapid commercialization of 

space, smaller launch platforms and satellite buses have demanded much higher 

efficiency from all space equipment than can be achieved through this incremental 

approach. 

This work applies an approach called tensegrity to deployable antenna development. 

Kenneth Snelson, a student of R. Buckminster Fuller, invented tensegrity structures in 

1948. Such structures use a minimum number of compression members (struts); stability 

is maintained using tension members (ties). The novelty introduced in this work is that 
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the ties are elastic, allowing the ties to extend or contract, and in this way changing the 

surface of the antenna. 

Previously, the University of Florida developed an approach to quantify the stability 

and motion of parallel manipulators. This approach was applied to deployable, tensegrity, 

antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 

(square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed 

which establishes usable structural parameters. The primary objective for this work was 

to prove the stability of this class of deployable structures, and their potential application 

to space structures. The secondary objective is to define special motions for tensegrity 

antennas, to meet the subsystem design requirements, such as addressing multiple 

antenna-feed locations. 

This work combines the historical experiences of the artist (Snelson), the 

mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical 

design approach. This kinematic analysis of tensegrity structures blends these differences 

to provide the design community with a new approach to lightweight, robust, adaptive 

structures with the high reliability that space demands. Additionally, by applying Screw 

Theory, a tensegrity structure antenna can be commanded to move along a screw axis, 

and therefore meeting the requirement to address multiple feed locations. 
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CHAPTER 1. 
BACKGROUND 

Space Antenna Basis 

The field of deployable space structures has matured significantly in the past decade. 

What once was a difficult art form to master has been perfected by numerous companies, 

including TRW, Hughes, and Harris. The significance of this maturity has been the 

reliable deployment of various antenna systems for spacecraft similar to NASA’s 

Tracking Data Relay Satellite. In recent years, parabolic, mesh-surface, reflector 

development has been joined by phased arrays (flat panel structures with electronically 

steered beams). Both of these designs are critical to commercial and defense space 

programs. 

An era has begun where commercial spacecraft production has greatly exceeded 

military/civil applications. This new era requires structural systems with the proven 

reliability and performance of the past and reduced cost. 

This dissertation addresses one new approach to deployable antenna design utilizing a 

kinematic approach known as tensegrity, developed by Kenneth Snelson (student of R. 

Buckminster Fuller) in 1948 [Connelly and Black, 1998]. The name tensegrity is derived 

from the words Tensile and Integrity, and was originally developed for architectural 

sculptures. The advantage of this type of design is that there is a minimum of 

compression tubes (herein referred to as struts); the stability of the system is created
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through the use of tension members (ties). Specifically, this work addresses the new 

application for self-deploying structures. 

Antenna Requirements 

James R. Wertz of Microcosm, Inc., a leading spacecraft designer, defines a system’s 

requirements through a process of identifying broad objectives, reasonably achievable 

goals, and cost constraints [Larson and Wertz, 1992]. Space missions vary greatly, and 

the requirements, goals, and costs associated with each task also vary greatly, but one 

constraint is ever present: “space is expensive”. The rationale behind this study of new 

deployable techniques is related to the potential cost savings to be gained. 

The mission objective for a large, deployable space antenna is to provide reliable 

radio frequency (RF) energy reflection to an electronic collector (feed) located at the 

focus of the parabolic surface. The current state of deployable parabolic space antenna 

design is based on a segmented construction, much like an umbrella. Radial ribs are 

connected to a central hub with a mechanical advantaged linear actuator to drive the 

segments into a locked, over-driven, position. Other approaches have been proposed 

utilizing hoop tensioners (TRW) and mechanical memory surface materials (Hughes), but 

as of this publication, these alternative approaches have not flown in space. 

To meet this objective, an analysis of mathematics and electrical engineering yields 

three parameters: defocus, mispointing, and surface roughness. For receiving antennas, 

defocus is the error in the reflector surface that makes the energy paint an area, rather 

than converge on the focal point. Mispointing is the misplacement of the converged 

energy to a position other than the designed focal point. Surface roughness, or the 

approximation to a theoretical parabolic surface, defines the reflector’s ability to reflect 
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and collect a given band of RF energy. Higher band reflectors require a more accurate 

surface that better approximates the theoretical parabola. Similarly for transmitting 

antennas, defocus generates divergent rays of energy (rather than parallel) from the 

reflector surface; mispointing directs these waves in the wrong direction. Defocus (focal 

area vice point) and mispointing (focus located in the wrong position) are illustrated in 

Figure 1-1. 

 

Figure 1-1. Defocus and Mispointing on a Parabolic Antenna 

In recent years, numerous Department of Defense organizations have solicited for 

new approaches to deployable antenna structures. The Air Force Research Laboratories 

(AFRL) are interested in solutions to aid with their Space Based Laser and Radar 

programs. Specifically, they have requested new solutions to building precision 

deployable structures to support the optical and radar payloads. 

Improvement Assumptions 

The basis for this research is the assumption that the stowed density for deployable 

antennas can be greatly increased, while maintaining the reliability that the space 

community has enjoyed in the past. Failure of these structures is unacceptable, but if the 
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stowed volume is reduced (therefore an increase in density for a given weight), launch 

services could be applied much more efficiently. 

The implementation of multiple vehicle launch platforms (i.e. Iridium built by 

Motorola) has presented a new case where the launch efficiency is a function of the 

stowed spacecraft package, and not the weight of the electronic bus. For Extremely High 

Frequency systems (greater than 20GHz) in low earth orbit (LEO), the antenna aperture 

need only be a few meters in diameter. But for an L-band, geosyncronous (GEO) satellite 

(i.e. AceS built by Lockheed Martin), the antenna aperture diameter is 15 meters. And to 

reach GEO, less weight and payload drag must be achieved to ensure a more efficient 

ascent into the orbit. Currently, these systems stow within the rocket launchers much like 

folded inverted umbrellas. This greatly limits the stowage efficiency, greatly increasing 

the launcher shroud canister height. This research addresses a concept to improve this 

efficiency. 
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CHAPTER 2. 
INTRODUCTION 

Tensegrity Overview 

Pugh [1976] simplified Snelson’s work in tensegrity structures. He began with a basic 

description of the attractions and forces in nature that govern everyday life. From there he 

described the applications in history of tensile and compressive members in buildings and 

ships to achieve a balance between these forces to achieve the necessary structures for 

commerce and living. The introduction of Platonic Solids presents the simplicity and art 

of tensile/compressive structures. The Tetrahedron in Figure 2-1 is a four-vertex, 6-

member structure. Framing the interior with a strut (tetrapod) system and connecting the 

vertices with ties can create the tensegrity. The ties must, of course, always be in tension. 

 

Figure 2-1. A Simple Tetrahedron and Tripod Frame 

The Octahedron (6-vertices, 12-members, and 8-faces) is the basis for this research to 

apply tensegrity to deployable antenna structures. Figure 2-2 presents the simple structure
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and tensegrity application (rotated about the center, with alternate struts replaced by ties). 

From this simple structure, we have been able to create a class of deployable structures 

using platform kinematic geometry. It is apparent that the tensegrity application 

resembles a six-leg parallel platform. It is from this mathematics that the new designs are 

derived. 

 

Figure 2-2. The Simple, Rotated, and Tensegrity Structure Octahedron 

The work of Architect Peter Pearce [1990] studies the nature of structures and the 

discovery of the Platonic Solids. Plato was able to determine the nature of structures, and 

the structure of nature (a duality), through observing naturally occurring systems such as 

spider webs. Building on this work, Pearce was able to document other natural 

phenomena (soap bubbles, Dragonfly wings, and cracked mud) to establish energy 

minimization during state change. The assumption here is that nature uses the most 

energy-efficient method. From these assumptions and an understanding of stress and 

strain in structural members (columns and beams), he was able to present a unique 

solution for simple, durable, high strength structures. From these conclusions, he 
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proposes a family of residential, commercial, and industrial structures that are both 

esthetically pleasing and functional. 

Related Research 

The most comprehensive study of the technology needs for future space systems to be 

published in the last decade was released by the International Technology Research 

Institute [WTEC, 1998]. This NSF/NASA sponsored research “commissioned a panel of 

U.S. satellite engineers and scientists to study international satellite R&D projects to 

evaluate the long-term presence of the United States in this industry.” A prior study was 

undertaken in 1992 to establish that there was significant activity in Europe and Asia that 

rivaled that of the U.S., and benchmarked this R&D to U.S. capability. The later study 

added market, regulatory, and policy issues in addition to the technology developments. 

The conclusion was that while the U.S. holds a commanding lead in the space 

marketplace, there is continual gaining by both continents. This is evident in space 

launch, where Ariane Space has nearly achieved the capabilities of Boeing’s (Delta) 

rocket services. 

The significance of this study is that U.S. manufacturers are meeting their goals for 

short-term research (achieving program performance), but have greatly neglected the 

long-term goals, which has traditionally been funded by the government. The top 

candidate technologies include structural elements, materials and structures for electronic 

devices, and large deployable antennas (>25 meters diameter). While there have been 14 

meter subsystems developed to meet GEO system requirements during the 1990s, the 

large deployable requirement has yet to be addressed or developed. This research will 

address one possible solution to building such a subsystem. 
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Related Designs 

Tetrobots [Hamlin and Sanderson, 1998] have been developed in the last few years as 

a new approach to modular design. This approach utilizes a system of hardware 

components, algorithms, and software to build various robotic structures to meet multiple 

design needs. These structures are similar to tensegrity in that they are based on Platonic 

Solids (tetrahedral and octahedral modules), but all the connections are made with truss 

members. Tensegrity utilizes only the necessary struts (compression members) and ties 

(tensile members) to maintain stability. 

Adaptive trusses have been applied to the field of deployable structures, providing the 

greatest stiffness and strength for a given weight of any articulated structure or 

mechanism [Tidwell et al. 1990]. The use of the tetrahedron geometry (6-struts and 4-

vertices) is the basis for this approach. From that, the authors propose a series of 

octahedral cells (12-struts and 6-vertices) to build the adaptive structure (Figures 2-3 and 

2-4). The conclusion is that from well-defined forward analyses (position, velocity and 

acceleration), this adaptive truss would be useful for deployed structures to remove 

position or motion errors caused by manufacturing, temperature change, stress, or 

external force [Wada et al. 1991]. 
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Figure 2-3. Octahedral Truss Notation 

z
y

x

Cell 1

Cell 2

Cell n

z
y

x

Cell 1

Cell 2

Cell n

 

Figure 2-4. Long Chain Octahedron VGT 

The most complex issue in developing a reliable deployable structure design is the 

packaging of a light weight subsystem in as small a volume as possible, while ensuring 

that the deployed structure meets the system requirements and mission performance. 

Warnaar developed criteria for deployable-foldable truss structures [Warnaar 1992]. He 
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addressed the issues of conceptual design, storage space, structural mass, structural 

integrity, and deployment. This work simplifies the concepts related to a stowed two-

dimensional area deploying to a three-dimensional volume. The author also presented a 

tutorial series [Warnaar and Chew, 1990 (a & b)]. This series of algorithms presents a 

mathematical representation for the folded (three-dimensional volume in a two-

dimensional area) truss. This work aids in determining the various combinations for 

folded truss design. 

NASA Langley Research Center has extensive experience in developing truss 

structures for space. One application, a 14-meter diameter, three-ring optical truss, was 

designed for space observation missions (Figure 2-5). A design study was performed [Wu 

and Lake, 1996] using the Taguchi methods to define key parameters for a Pareto-optimal 

design: maximum structural frequency, minimum mass, and the maximum frequency to 

mass ratio. Tetrahedral cells were used for the structure between two precision surfaces. 

31 analyses were performed on 19,683 possible designs with an average frequency to 

mass ratio between 0.11 and 0.13 Hz/kg. This results in an impressive 22 to 26 Hz for a 

200-kg structure. 

Related Patents 

The field of deployable space structures has proven to be both technically challenging 

and financially lucrative during the last few decades. Such applications as large parabolic 

antennas require extensive experience and tooling to develop, but this is a key component 

in the growing personal communications market. The patents on deployable space 

structures have typically focused on the deployment of general truss network designs, 



 

 

11 

rather than specific antenna designs. Some of these patents address new approaches that 

have not been seen in publication. 

Ring 3

Ring 2

Ring 1

Core

Upper surface

Lower surface

Ring 3

Ring 2

Ring 1

Core

Upper surface

Lower surface  

Figure 2-5. Three-ring Tetrahedral Truss Platform 

The work of Kaplan and Schultz [1975], and, Waters and Waters [1987] specifically 

applies strut and tie construction to the problem of deployable antennas, but the majority 

of patents address trusses and the issues associated with their deployment and minimal 

stowage volume. Nelson [1983] provides a detailed design for a three-dimensional 

rectangular volume based on an octahedron. His solution to deployment uses a series of 

ties within the truss network. Details of the joints and hinges are also included. When 

networked with other octahedral subsets, a compact stow package could be expanded into 

a rigid three-dimensional framework. 

Other inventors continued work in expandable networks to meet the needs of 

International Space Station. Natori [1985] used beams and triangular plates to form a 

tetrahedral unit. These units formed a linear truss; his work included both joint and hinge 

details and the stowage/deployment kinematics. Kitamura and Yamashiro [1990] 
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presented a design based on triangular plates, hinged cross members, and ties to build 

expanding masts from very small packages. 

Onoda [1985, 1986, 1987a, 1987b, 1990] patented numerous examples of 

collapsible/deployable square truss units using struts and ties. Some suggested 

applications included box section, curved frames for building solar reflectors or antennas. 

Onoda et al. [1996] published results. Rhodes and Hedgepeth [1986] patented a much 

more practical design that used no ties, but employed hinges to build a rectangular box 

from a tube stowage volume. 

Krishnapillai [1988] and Skelton [1995] most closely approximate the research 

presented herein, employing the concepts of radial struts and strut/tie combinations, 

respectively. The combination of these approaches could provide the necessary design to 

deploy a small package to a radial backup surface, as with a deployable antenna. 
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CHAPTER 3. 
STUDY REQUIREMENTS 

Stability Criterion 

The primary assumption for this research is that improved stability will provide a 

superior deployable structure. Applying a tensegrity approach, the secondary assumption 

is a resultant lower system development cost. The development of this new approach to 

antenna systems, assuming these criteria, will provide a usable deployable product with 

greatly reduced component count, assembly schedule, and final cost, but with equal 

stability and system characteristics to the currently popular radial rib antenna system. 

From this assumption, increased stowage density will be realized. 

Stowage Approach 

Figure 3-1 shows a deployed and stowed antenna package, utilizing a central hub 

design. Most current deployable antenna designs use this approach. For a single fold 

system, the height of the stowed package is over one half of the deployed diameter. The 

approach taken in this research is to employ Tensegrity Structural Design to increase the 

stowed package density. 

Deployment Approach 

The deployable approach for this 6-6 system is to manipulate the legs joining the hub 

to the antenna, to create a tensegrity structure. Onoda suggests a sliding hinge to achieve 

deployment, but such a package still requires a large height for the stowed structure. This 

approach does have excellent merit for deployable arrays, as he presents in the paper.
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Figure 3-1. Deployed and Stowed Radial Rib Antenna Model 

The tensegrity 6-6 antenna structure would utilize a deployment scheme whereby the 

lowest energy state for the structure is in a tensegrity position. Figure 3-2 shows this 

position, with the broken lines representing the ties (tension) and the solid lines 

representing the struts (compression). Clearly, equilibrium of this structure requires that 

the tie forces sum to match the compression forces at the end of each strut. 

 

Figure 3-2. 6-6 Tensegrity Platform 
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Mechanism Issues 

Rooney et al. [1999] developed a concept for deploying struts and ties using a “reel” 

design, thereby allowing the ties to stow within the struts. This simple, yet durable 

approach solves the problem of variable length ties for special antenna designs, such as 

those with multiple feed centers (focal points on the parabolic antenna surface). Figure 

3-3 shows this concept, using a deployment mechanism for the ties; spherical joints 

would be necessary to ensure that there are only translational constraints. 

Angle-Unconstrained
Revolute Joint

Elastic Ties Deployed 
from the Strut (3 each)

Strut Tube

Angle-Unconstrained
Revolute Joint

Elastic Ties Deployed 
from the Strut (3 each)

Strut Tube

 

Figure 3-3. The Struts Are Only Constrained in Translation 
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CHAPTER 4. 
BASIC GEOMETRY FOR THE 6-6 TENSEGRITY APPLICATION 

The application of tensegrity structures to the field of deployable antenna design is a 

significant departure from currently accepted practices. Not only must this new structure 

meet the system parameters previously described, but there also must be a process to 

validate the performance reliability and repeatability. Figure 4-1 shows the rotation of the 

6-6 structures through tensegrity. Tensegrity occurs when all struts are in compression, 

and all ties are in tension. When describing a stable structure, the struts cannot be in 

tension because they only interface with tensile members (ties). 

 

Figure 4-1. A 6-6 Structure Rotated through Tensegrity 

As presented in Chapter 1, the accepted subsystem mechanical requirements applied 

to deployable parabolic antennas are defocus, mispointing, and surface roughness. 
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Defocus, or the “cupping” of the structure, must be corrected once the subsystem is 

deployed to correct any energy spreading which occurs. A correctly shaped parabolic 

antenna surface may not direct the radio frequency (RF) energy in the correct direction 

(to the right focal point). This is known as mispointing. Practically, antenna design 

requires that the theoretical focal “point” be a “plane”, due to energy management issues 

of RF transmitter/receivers. The surface accuracy is a coupled effect, which is influenced 

by the non-linear stiffness (displacement is not linear with respect to the applied force), 

structural time constant, and general stability of the backup reflector structure and facing 

antenna mesh surface. Positioning and control of this mesh surface defines the antenna’s 

“accuracy”. Pellegrino (The University of Cambridge) has developed applicable tools for 

calculating the motions of pre-stressed nodes by actuating flexible ties [You, 1997]. 

In order to address adequately these three design parameters, the stability of this 

subsystem must be assured. During his career, Hunt [1990] has addressed line geometry, 

the linear dependence of lines, the linear complex, and the hyperboloid. All of these 

studies have direct application in the case of tensegrity structures. This linear dependence 

relates to the stability of the structure. For this to occur, the two sets of lines on the 

tensegrity structure, the struts and ties, must lie on co-axial hyperboloids of one sheet. 

This builds the case to explain how such a structure in tensegrity can be stable yet at a 

singularity, having instantaneous mobility. To explain this, an introduction into points, 

planes, lines, and Screw Theory is presented. 

Points, Planes, Lines, and Screws 

The vector equation for a point can be expressed in terms of the Cartesian coordinates 

by 
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The six homogeneous coordinates ( )R,Q,P;N,M,L  or ( )0S;S  are superabundant by 2 

since they must satisfy the following relationships. 

2222 dNMLSS =++=⋅ (4-6) 

where d is the distance between the two points and, 

0NRMQLPSS 0 =++=⋅ (4-7) 

which is the orthogonality condition. Briefly, as mentioned, the vector equation for a line 

is given by 0SSr =×
r

. Clearly, S and 0S  are orthogonal since 0SrSSS 0 =×⋅=⋅
r

. A 

line is completely specified by four independent ratios. Therefore, these are an 4∞  lines 

in three space. 

Ball [1998, p.48] defines a screw by, “A screw is a straight line with which a definite 

linear magnitude termed the pitch is associated”. For a screw, 00SS ≠⋅ , and the pitch 

is defined by 
2N2M2L

NRMQLP
h

++

++= . It follows that there are an 5∞  screws in three space. 

By applying Ball’s Screw Theory, the mathematics are developed to show that this class 

of tensegrity structures can follow a screw. This is very applicable in antenna design to 

allow a subsystem to direct energy to multiple feed centers. 

The Linear Complex 

Many models have been developed for the geometry and mobility of octahedral 

manipulators. Instant mobility of the deployable, tensegrity, antenna structure is of much 

interest within the design community. This instant mobility is caused by the Linear 

Dependence of Lines. This occurs when the connecting lines of a structure become 

linearly dependent. They can belong to (i) a linear complex (∞3 of lines); (ii) a linear 
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congruence (∞2 of lines); or (iii) a ruled surface called a cylindroid (∞1 of lines). The 

linear complex has been investigated by, for example, Jessop [1903]. Of interest here is 

the linear complex described by Hunt [1990], which will be described shortly. Before 

proceeding, it is useful to note that the resultant of a pair of forces, which lie on a pair of 

skew lines, lies on the cylindroid. The resultant is a wrench, which is simply a line on the 

cylindroid with an associated pitch h. The resultant is only a pure force when a pair of 

forces intersects in a finite point or at infinity (i.e. they are parallel). 

Hunt [1990] describes a linear complex obtained by considering an infinitesimal twist 

of a screw with pitch h on the z-axis. For such an infinitesimal twist, a system of ∞2 

coaxial helices of equal pitch is defined. Every point on the body lies on a helix, with the 

velocity vector tangential to the helix at that point. Such a system of ∞3 tangents to ∞2 

coaxial helices is called a helicoidal velocity field. 
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Figure 4-2. Two equal-pitched helices 
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In Figure 4-2, two helices are defined, one lying on a circular cylinder of radius a, 

and the other on a coaxial circular cylinder of radius b. Two points A and B are taken on 

the respective radii and both cylinders are on the same z-axis. After one complete 

revolution, the points have moved to A’ and B’, with AA’=BB’=2πh. Both advance 

along the z-axis a distance hθ for a rotation θ. Now, the instantaneous tangential 

velocities are Vta = ω x a and Vtb = ω x b. Further, Va=hω and Vta=ω x a. The ratio 

|Va|/|Vta| = h/a = tan α, or h=a tan α. Similarly, h/b = tan β, or h=b tan β. 
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Figure 4-3. A Pencil of Lines in the Polar Plane α Through the Pole A 

Further, Figure 4-3 (see [Hunt, 1990]) illustrates a pole A through which a helix 

passes together with a polar plane α. The pencil of lines in α which pass through A are 

normal to the helix (i.e. the vector through A tangent to the helix). The plane α contains a 

pencil of lines (∞1) through the pole A. Clearly, as a point A moves on the helix, an ∞2 

lines is generated. If we now count ∞1 concentric helices of pitch h, and consider the 

totality of the ∞2 lines generated at each polar plane on a single helix, we will generate ∞3 
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lines, which comprises the linear complex. All such lines are reciprocal to the screw of 

pitch h on the z-axis. The result with respect to anti-prism tensegrity structures will be 

shown in (4-26) and (4-27) and it is clear by (4-28) that the pitch h is given by –ab/6z. 

The Hyperboloid of One Sheet 

Snyder and Sisam [1914] developed the mathematics to describe a hyperbola of 

rotation, known as the hyperboloid of one sheet (Figure 4-4). The surface is represented 

by the equation 

(4-8)1
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which is a standard three-dimensional geometry equation. This equation can be factored 

into the form 
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and can become an alternate form 
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Similarly, 
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The equations can be manipulated to form: 
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Figure 4-4. A Ruled Hyperboloid of One Sheet 

These formulae describe the intersection of two planes, which is a line. Therefore, for 

every value of ρ there is a pair of plane equations. Every point on the line lies on the 

surface of the hyperboloid since the line coordinates satisfy 4-10. Similarly, any point on 

the surface, which is generated by the line equation, also satisfies the equations in 4-12 as 

they are derived from 4-10. The system of lines, which is described by 4-12, where ρ is a 

parameter, is called a regulus of lines on this hyperboloid. Any individual line of the 

regulus is called a generator. A similar set of equations can be created for the value η 
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The lines that correspond to η constitute a second regulus, which is complementary to 

the original regulus and also lies on the surface of the hyperboloid. 

Regulus Plücker Coordinates 

Using Plücker Coordinates [Bottema and Roth, 1979], three equations describe a line: 

S (L, M, N) and So (P, Q, R) 

RLyMx

QNxLz

PMzNy

=−
=−
=−

(4-14)

 

Expanding 4-12, the equations become 

0abzacybcxabc

and

0abzacybcxabc

=ρ+−ρ−

=−ρ+−ρ
(4-15)

 

The Plücker axis coordinates for the line in the ρ regulus are obtained by counting the 

2x2 determinants of the 2x4 arrays, which are built from these equations. 
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and 
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This set of coordinates is homogeneous, and we can divide through by the common factor 

abc. Further, we have in ray coordinates: 
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By using the same method for developing the Plücker coordinates and the 

homogeneous ray coordinates, the η equations are developed with 4-13. 
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and 









ηη−
−η−−η

abacbcabc

abacbcabc
(4-21)

 

to form the Plücker coordinates 
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and 



 

 

26 

)1(abc
1

1
abcN

cab2
11

cabM

)1(bca
1

1
bcaL

222

22

222

η+−=
η−

η−−
=

η=
η−η

−−
=

η−=
η
−η−

=

(4-23)

 

yielding, after dividing by the common factor abc, the ray coordinates: 
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This series of calculations shows that the lines of the tensegrity structure lie on a 

hyperboloid of one sheet, either in the “forward” (ρ) or the reverse (η) directions. The 

next section addresses the linear dependence inherent in the lines of a hyperboloid of one 

sheet and therefore the effect on the stability of the tensegrity structure. 

Singularity Condition of the Octahedron 

In Chapter 5, a comparison between a 3-3 parallel platform and the octahedron will 

be developed. Figure 4-5 is a plan view of the octahedron (3-3 platform) with the upper 

platform in a central position for which the quality index, 1
mJdet

Jdet
==λ  [Lee et al. 

1998]. When the upper platform is rotated through o90± about the normal z-axis the 

octahedron is in a singularity. Figure 4-6 illustrates the singularity for o90=φ when 0=λ  

since 0Jdet = . The rank of J is therefore 5 or less. It is not immediately obvious from 

the figure why the six connecting legs are in a singularity position. 
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Figure 4-5. Octahedron (3-3) Platform in Central Position 
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Figure 4-6. Octahedron Rotated 90o into Tensegrity 

However, this illustrates a plan view of the octahedron with the moving platform 

ABC  rotated through o90=φ  to the position CBA ′′′ . As defined by Lee et al. [1998], 

the coordinates of CBA ′′′  are 
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(4-25)
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By applying the Grassmann principles presented in (4-4), at o90=φ , the k̂  components 

for the six legs are zNi =  and ab
6

1
iR =  where i=1, 2, …6. The Plücker coordinates of 

all six legs can be expressed in the form 
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Therefore, a screw of pitch h on the z-axis is reciprocal to all six legs and the coordinates 

for this screw are 

[ ]h00;1,0,0ŜT = (4-27) 

For these equations, 

z6

ab
hor0

6

ab
hz −==+ (4-28)

 

It follows from the previous section that all six legs lie on a linear complex and that the 

platform can move instantaneously on a screw of pitch h. This suggests that the tensegrity 

structure is in a singularity and therefore has instantaneous mobility. 

Other Forms of Quadric Surfaces 

The locus of an equation of the second degree in x, y, and z is called a quadric 

surface. The family that includes the hyperboloid of one sheet includes the ellipsoid, 

described by the equation: 
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The surface is symmetrical about the origin because only second powers of the 

variables (x, y, and z) appear in the equation. Sections of the ellipsoid can be developed, 

as presented by Snyder and Sisam [1914], including imaginary sections where the 

coefficients become 1− . If the coefficients are a=b>c then the ellipsoid is a surface of 

revolution about the minor axis. If the coefficients are a>b=c then it is a surface of 

revolution about the major axis. If a=b=c then the surface is a sphere. If a=b=c=0 the 

surface is a point. 

Although it is not relevant to this tensegrity structure analysis, the hyperboloid of two 

sheets (Figure 4-7) is described by the equation 
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Figure 4-7. Hyperboloid of Two Sheets 
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Snyder and Sisam [1914] state, “It is symmetric as to each of the coordinate planes, 

the coordinate axes, and the origin. The plane kz =  intersects the surface in the 

hyperbola.” 
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The traverse axis is 0y = , kz = , for all values of k . The lengths of the semi-axes are 

2c

2k
1b,

2c

2k
1a ++ . They are smallest for 0k = , namely a  and b , and increase 

without limit as k  increases. The hyperbola is not composite for any real value of k. 
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CHAPTER 5. 
PARALLEL PLATFORM RESULTS 

3-3 Solution 

Previous University of Florida CIMAR research [Lee et al. 1998] on the subject of 3-

3 parallel platforms, Figure 5-1 is the basis work for this research. Their study addressed 

the optimal metrics for a stable parallel platform. 

The octahedral manipulator is a “3-3” device that is fully in parallel. It has a linear 

actuator on each of its six legs. The legs connect an equilateral platform triangle to a 

similar base triangle in a zigzag pattern between vertices. Our proposed quality index 

takes a maximum value of 1 at a central symmetrical configuration that is shown to 

correspond to the maximum value of the determinant of the 6x6 Jacobian matrix of the 

manipulator. This matrix is none other than that of the normalized line coordinates of the 

six leg-lines; for its determinant to be a maximum, the platform triangle is found to be 

half of the size of the base triangle, and the perpendicular distance between the platform 

and the base is equal to the side of the platform triangle. 

The term in-parallel was first coined by Hunt [1990] to classify platform devices 

where all the connectors (legs) have the same kinematic structure. A common kinematic 

structure is designated by S-P-S, where S denotes a ball and socket joint, and P denotes a 

prismatic, or sliding kinematic pair. The terminology 3-3 is introduced to indicate the 

number of connection points in the base and top platforms. Clearly, for a 3-3 device, 
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there are 3 connecting points in the base, and in the top platforms as shown in Figure 5-1. 

A 6-6 device would have 6 connecting points in the top and base platforms. 
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Figure 5-1. 3-3 Parallel Platform (plan view) 

The parameter a defines the side of the platform (the moving surface); parameter b 

defines the side of the base; and parameter h defines the vertical (z-axis) distance 

between the platform and the base. The assumption that “more stable” is defined as being 

further away from a singularity. For a singularity, the determinant (det J) of the Jacobian 

matrix (J), the columns of which are the Plücker coordinates of the lines connecting the 

platform and the base, is zero. The most stable position occurs when det J is a maximum. 

These calculations create the “quality index” (λ), which is defined as the ratio of the J 

determinant to the maximum value. 

The significance between this 3-3 manipulator research and tensegrity is the 

assumption that there is a correlation between the stability of a 6-strut platform and a 3-

strut, 3-tie tensegrity structure. If true, this would greatly improve the stability prediction 

possibilities for deployable antennas based on tensegrity. As described in the abstract 
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paragraph above, the quality index (λ) is the ratio of the determinant of J to the 

maximum possible value of the determinant of J. The dimensionless quality index is 

defined by 

mJdet

Jdet
=λ (5-1)

 

In later chapters, this same approach applied here for the J matrix of the 3-3 platform 

will be used for calculating that of the 6-6 tensegrity structure. For the later case the lines 

of the connecting points are defined by a 6x12 matrix and will require additional 

mathematic manipulation. In this case, a 6x6 matrix defines the lines of the 3-3 platform, 

and the determinant is easily calculated. The matrix values are normalized through 

dividing by the nominal leg length, to remove any specific design biases. 

The centroid of the triangle is considered to be the coordinate (0,0). From that basis, 

the coordinates for the upper and lower platforms are 
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The Grassmann method for calculating the Plücker coordinates is now applied to the 

3-3 design, as described in Chapter 4. Briefly, the coordinates for a line that joins a pair 

of points can easily be obtained by counting the 2x2 determinants of the 2x4 array 

describing the connecting lines. 
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which yields the matrix for this system of 
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The normalization divisor is the same for each leg (they are the same length), 

therefore, ( )222222 h3baba
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NML ++−=++=l  and the expansion of the 

determinant yields 
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Dividing above and below by h3 yields 
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The key to calculating the maximum value for the quality index is to find the maximum 

height, h. Differentiating the denominator of the determinant with respect to h, and 
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equating to zero to obtain a maximum value for det J yields the following expression for 

h. 

( )22
m baba

3

1
hh +−== (5-8)

 

If we now select values for a and b, (5-7) yields the value hm for det J to be a maximum. 
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Further, we now determine the ratio γ=b/a to yield a maximum absolute value 

mJdet . Substituting b= γa in Equation 5-7 yields 
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To get the absolute maximum value of this determinant, the derivative with respect to γ is 

taken which yields: 

2
a

b

0
2

1
1
2

==γ

=







γ

−
γ (5-11)

 

Substituting this result in (5-8) gives: 

1
a

h = (5-12)
 

This work shows some similarity to the values to be derived for the 6-6 platform. The 

original quality index equation reduces to a function of (platform height) / (platform 

height at the maximum index). 
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The resulting quality index plots for this 3-3 structure are found in Figures 5-2 

through 5-6. In Figure 5-2, the quality index varies about the geometric center of the 

structure, with usable working area (index greater than 0.8) within half of the base 

dimension (b). It is interesting to note that these are not circles, but slightly flattened at 

the plot’s 45o locations. 
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Figure 5-2. Coplanar translation of Platform from Central Location: Contours of Quality 
Index 
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Figure 5-3. Rotation of Platform About Z-axis 

R o t a t i o n  θ

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0

Q
ua

lit
y 

In
de

x 
λ

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

 

Figure 5-4. Rotation of Platform About X-axis 
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Figure 5-5. Rotation of Platform About Y-axis 

As expected, rotations about the z-axis yield values approaching zero, where the 

singularity occurs. What is unique is that there are workable quality indices when the 

structure is rotated about the x- and y-axes over 20o. This could be valuable for antenna 

repointing without using an antenna gimbal. 

Figure 5-6 presents the change in quality index due to the height of the platform 

relative to the maximum value. Obviously, the greatest value (1.0) occurs when these 

values are equal. From this it is apparent that a working envelope of 40% (+/-20% about 

the maximum) is achievable. Again, this discovery is helpful in the design on working 

antenna systems to address multiple feed centers. 
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Figure 5-6. Quality Index as a Function of the Height Ratio 

4-4 Solution 

The 4-4 parallel platform (Figure 5-7) is a square anti-prism. The calculations of the 

4-4 quality index are similar to those for the 3-3 platform; however, because the 4-4 line 

coordinates yield a 6x8 matrix, the determinant cannot be calculated directly and we 

introduce JJT [Knight, 1998], the product of the matrix and its transpose. As with the 3-3 

platform, λ is defined as the ratio of the Jacobian determinant to the maximized J 

determinant. 
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Figure 5-7. The 4-4 Parallel Platform (plan view) 
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From the Cauchy-Binet theorem, it can be shown that 2
n

2
2

2
1

T ...JJdet ∆++∆+∆=⋅ . 

Each ∆ is the determinant of a 6x6 submatrix of the 6x8 matrix. It is clear that (5-14) 

reduces to (5-1) for the 6x6 matrix. This method can be used for any 6xn matrix. As with 

the 3-3 platform, the determinant is calculated. As shown in the figure, the value for the 

side of the platform (moving plane) is a. Similarly; b is the value for the base side. The 

distance between the upper surface and the base surface is h. The definition of the line 

coordinate endpoints is 
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Therefore, the Jacobian matrix is 
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It follows that TJJdet  is given by  
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By following the same procedure as used for the 3-3 parallel platform, the key to 

calculating the maximum value for the quality index is to find the maximum height, h. To 

find this expression, the numerator and denominator are both divided by h3, to ensure that 

h is only found in the denominator. Differentiating the denominator with respect to h, and 

equating this value to zero provides the maximum expression. 

( )22
m bab2a

2

1
hh +−== (5-18)

 

Again, as presented in the 3-3 analysis, this maximum value for h is included in 

(5-17) to provide the maximum determinant. 
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To determine the ratio γ=b/a for the maximum expression for (5-19), b=γa is substituted. 

The numerator and denominator are also both divided by γ3a3. 
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To get the maximum value of this determinant, the derivative with respect to γ is taken. 

This yields the ratio between a, b, and h. 
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CHAPTER 6. 
6-6 DESIGN 

6-6 Introduction 

The 6-6 in-parallel platform (a hexagonal anti-prism) is the basis for this new 

deployable antenna design. Using the previously derived mathematics, similar quality 

index values are developed. This defines the stability of the structure once it is in an 

equilibrium position. As with the 4-4 platform, the Cauchy-Binet theorem is used to 

determine the index. Once the mathematics is determined, further attention will be 

applied to antenna design. 

Sketch 

Figure 6-1 presents the 6-6 in-parallel platform. This is a highly redundant parallel 

platform with 12 legs for 6 degrees of freedom, but can also be manipulated to define an 

antenna subsystem by applying tensegrity structure design. This approach will be 

presented in a later chapter. 

 

Figure 6-1. A 6-6 Parallel Platform (Hexagonal Anti-Prism)
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A plan view of the 6-6 parallel (redundant) platform is shown in Figure 6-2. Double 

lines depict the base and top platform outlines. Heavy lines depict the connectors. The 

base coordinates are GA through GF; the platform coordinates are A through F. The first 

segment is S1 connecting points GA (base) and A (platform); the last segment is S12 

connecting points GA and F. The base coordinates are all fixed and the x-y-z coordinate 

system is located in the base with the x-y plane in the base plane. Hence, the base 

coordinates are 
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Figure 6-2. A Plan View for the 6-6 Parallel Platform (Hexagonal Anti-Prism) 
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The coordinates for the top platform vertices at the central position are (6-3) where h 

is the height of the top platform above the base. 

(6-3)

[ ]

[ ] 







−








−−−









−









h
2

a3

2

a
Fh

2

a3

2

a
Eh0aD

h
2

a3

2

a
Ch

2

a3

2

a
Bh0aA

 

Applying Grassmann’s method (see Chapter 4) to obtain the line coordinates yields 

the following 12 arrays. 
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Counting the 2x2 determinants (see Chapter 4) yields the [L, M, N; P, Q, R] line 

coordinates for each of the twelve legs. The normalized line coordinates were found by 

dividing the calculated value by the nominal lengths of the legs for the central position. 
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Evaluating the Jacobian 

The J matrix, comprised of the line coordinates for the twelve legs, is a 6x12 array. 
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JT is, therefore, the transpose (a 12x6 matrix). 
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Optimization Solution 

Lee et al. [1998] developed the optimization method for the 3-3 and 4-4 platforms. 

The method for calculating the optimization value for the 6-6 J matrix (non-symmetric) is 

an extension of the 4-4 platform solution.  The quality index λ is given by 
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For this example, TJJdet is calculated. 
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As with the 4-4 parallel platform calculation, the maximum height (h) must be found. To 

find this expression, the numerator and denominator of (6-9) are both divided by h3, to 

ensure that h is only found in the denominator. Then, differentiating with respect to h and 

equating to zero provides the maximum expression. 
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As with the 4-4 analysis, this maximum value for h is included in (6-9) to provide the 

maximum determinant. 

(6-11)

( )2322

33
T
mm

bab3a

ba

8

54
JJdet

+−

= (6-11)

( )2322

33
T
mm

bab3a

ba

8

54
JJdet

+−

=

 

This yields the λ value (quality index) as a function of a and b. 

(6-12)( )
( )3222

2
3

223

T
mm

T

hbab3a

bab3ah8

JJdet

JJdet

++−

+−==λ (6-12)( )
( )3222

2
3

223

T
mm

T

hbab3a

bab3ah8

JJdet

JJdet

++−

+−==λ

 

This index (λ) is a value between zero (0) and one (1), which represents the stability of 

the structure.  

As with the 4-4 structure, the ratio γ=b/a, which represents the parameter ratio at the 

maximum quality index, is determined by substituting for b=γa. 
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Again, the numerator and denominator are both divided by γ3a3. 
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By differentiating the denominator with respect to γ, the maximum and minimum values 

are determined. This yields the solution for the most stable geometry for the 6-6 platform. 
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The vanishing of the first bracket of the right side of the equation yields imaginary 

solution, whilst the second bracket yields 
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Variable Screw Motion on the Z-Axis 

Duffy et al. [1998] presented a study of special motions for an octahedron using 

screw theory. The moving platform remains parallel to the base and moves on a screw of 

variable pitch (p). The screw axis is along the Z direction. 
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It is important to recognize that simply actuating the struts by giving each the same 

incremental increase or decrease in length can produce the motion. Continuity requires 

that the sum of the coordinates (about the circle defined) sums to zero. 
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Similar to previous octahedron and square platform papers, the radius from the center of 

the structure to the platform coordinates is equal to the length of the platform side 

( ar = ). 

Using the base and platform coordinates previously defined, the Plücker line 

coordinates are calculated using the Grassmann principle by counting the 2 x 2 

determinants of each of the 2 x 4 arrays. 
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The Plücker coordinates are defined by the 2x2 determinants of these 2x4 arrays. 

(6-37)( )











+−−






 +








−= AAAA

T
1 XY3

2

b

2

bh3

2

bh
;h

2

b
Y

2

b3
XŜ
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This yields the transpose of the Jacobian matrix. 
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The first three of the six Plücker coordinates define the length of the leg. The odd 

numbered legs for this structure are the same length. 
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(6-51)
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Similarly, lengths of the even numbered legs are equal. 
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Lee et al. [1998] used the following notation to describe the screw motion. 

D̂J T* δ=δl (6-53)D̂J T* δ=δl (6-53)
 

This notation describes an incremental change in leg length as a product of the 

normalized line coordinates (J*T) and the platform incremental change (∆x, ∆θ, etc.). To 

normalize the leg coordinates, each value is divided by the instantaneous leg lengths. 
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Calculating the summation of the individual coordinates shows that all the values 

are zero except for N and R. 
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The second pair of legs sum similarly. 
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Adding the first, third, fifth, seventh, ninth, and eleventh rows of the matrix and 

substituting the expressions for the coordinates yields the necessary expression. Note that 

z replaces h in this calculation. 
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The even leg calculation yields a similar result. 
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Special Tensegrity Motions 

Using the assumption that the even numbered legs are struts (2, 4, 6, 8, 10, and 12 

have no longitudinal displacement) then the equation reduces to a function of rotation and 

translation. 
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The pitch is defined by the ratio of linear z change to rotation about the z-axis. 
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This yields the pitch equation. 
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The subsequent integration yields the z calculation. This proves that the odd numbered 

struts can be commanded to yield a pitch motion (z and θz motions are coupled). 
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Equation (6-70) can be modified (a=r and zo=0) to define the square of the platform 

height. 

( ){ }1cos3sinabz zz
2 +φ−φ= (6-71)( ){ }1cos3sinabz zz
2 +φ−φ= (6-71)

 

Therefore, the platform height (z) is the root of (6-71). 

( ){ } 2
1

zz 1cos3sinabz +φ−φ= (6-72)( ){ } 2
1

zz 1cos3sinabz +φ−φ= (6-72)
 

This result shows that for a given twist about the z-axis (φz), there is a corresponding 

displacement along the z-axis, defined by a finite screw (p=z/φz), as shown. 
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Figure 6-3. The Pitch Relationship 
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CHAPTER 7. 
DEPLOYMENT AND MECHANICS 

While this research addresses the theory for a new class of deployable antenna 

structures, there remains significant work in defining the mechanics of such a subsystem. 

There does appear to be a potential reduction in mechanical component count as 

compared to current systems. This chapter addresses a potential deployment scheme, the 

mechanics necessary to achieve the motion, and some potential mechanisms to support 

these motions. 

Paramount to this design study is the combination of struts and ties. Waters and 

Waters [1987] suggested that there should be twelve (12) struts and twelve (12) ties for 

his hyperboloidal antenna model. This research suggests that there need only be six struts 

to define a six-degree of freedom structure. 

First, the struts are defined, including various approaches to deployment. Second, the 

strut/tie length and stiffness ratios are addressed. Third, a useful approach to deploying a 

semi-precision, mesh reflector is presented. 

Strut Design 

In order to deploy the struts from a stowed position, the end points of the stowage-to-

deployment plan must be defined. Figure 7-1 presents a nominal 15-meter (tip to tip) 

deployed surface with six struts. This first position is considered the starting position 

(α=0) according to Kenner (1976). The subsequent sketches show rotation to tensegrity 

(α=60o). The strut lengths are shown increasing for simplicity, but an actual design would 
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show the upper surface approaching the lower surface as the struts rotated to the 

tensegrity position. 

α=0o

α=20o α=40o

α=60o

α=0o

α=20o α=40o

α=60o

 

Figure 7-1. 6-6 Structure Rotated from α=0o to α=60o (Tensegrity) 

15 m.

14 m.

19 m.

16 m.

7 m.

15 m.

14 m.

19 m.

16 m.

7 m.

15 m.

14 m.

19 m.

16 m.

7 m.  

Figure 7-2. Dimensions for Model Tensegrity Antenna 
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Based on these design assumptions the structure (Figure 7-2) would have the values 

found in Table 7-1. 

Table 7-1. Deployable Tensegrity Design Values 

Design Parameter 
NOMINAL VALUE 

Tip to Tip Diameter 15 meters 

Deployed Height 14 meters 

Planar Ties (top and bottom) 7 meters 

Tension Ties (upper to lower) 16 meters 

Struts (upper to lower) 19 meters 

 

Based on this model, it is clear that this structure would require a stowage space 

approximately 20 meters in length and an isosceles triangle three times the diameter of 

the struts. For a conventional 75 mm tube design, the total stowage volume would be a 20 

m. long x 0.25 m. diameter. This is unacceptable for spacecraft design, as the trend in 

launch vehicle design is toward smaller systems, with correspondingly smaller fairings. 

In Figure 7-3, the nominal dimensions are presented for the Taurus and Delta launch 

vehicle. It is obvious from these sketches that a 20m x .25m antenna could not fit in even 

the 7.2m x 2.7m Extended Delta fairing. Design experience shows that the center of 

gravity for the spacecraft should be maintained at the centerline of the launch vehicle; 

therefore the usable height could be reduced to 5.3m x 2.7m. Clearly, a method for 

deploying the struts must be developed. The following examples are suggested for 

solving this design issue.  
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Figure 7-3. Taurus and Delta Launch Vehicle Fairings 

•  Folding Hinge Struts: Numerous antenna systems have been developed in the last 

30 years that utilize folding struts. They usually require some drive motion to 

deploy, including a latching mechanism at the end of the deployment travel. 

Figure 7-4 shows a simple hinge design, which could have an over-center locking 

mechanism. 

•  Sliding Coupling Struts: Similar to the folding design, sliding struts could be 

used, with a locking mechanism at the end of travel. Typically there is less force 

necessary to latch these struts, as it would take significant force to return them to 

the sliding configuration. Figure 7-5 shows this configuration, with a large angle 

sliding surface to lock the surface into place. Springs could be used to hold the 

mechanism in position. 

•  Telescoping Struts: Due to excessive weight and drive force required telescoping 

struts have not been applied to deployable space applications. As motor cost and 
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efficiency increase, this could become a viable option. Figure 7-6 presents this 

configuration, which would encourage tapered diameter struts, which improve the 

specific stiffness of a complete system. 

•  Inflatable Struts: A very different approach, but one that has been gaining favor 

with the space structures design community, is inflatable spars. The leaders in the 

field are ILC Dover (DE), L’Garde (CA), and SPS (AL). This approach can 

minimize the stowed spar volume, but analysis has shown that the size and weight 

of the deployment system is comparable to the three mechanical deployment 

schemes. The deployment requires a charge of gas energy, which requires a space 

qualified pump and tubing. One patented approach uses a UV hardening polymer 

that creates a solid structure once the inflatable is deployed. Another uses 

humidity evacuation technology to harden the tube. In all cases, structural 

integrity on orbit cannot be maintained merely by gas pressure; a solid structure 

must be provided.  

 

Figure 7-4. Folding Hinge Design 
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Figure 7-5. Sliding Coupling Design 

 

Figure 7-6.  Telescoping Design 

The greatest advantage to inflatables is that once the struts are deployed, they are 

almost uniform in cross sectional area and material properties. The mechanical 

approaches presented above introduce stiffness discontinuities at a minimum, and non-

linear load responses as the worst case. A trade study of these approaches is presented 

below. 
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Table 7-2. Strut Deployment Trade Study 

Strut 
Deployment 

Design 
Advantages Disadvantages 

Folding •  Design history 

•  Design relevance to other 
industries 

•  Moderate deployment forces 

•  Potential stiffness non-
linearities 

•  Potential hinge surface galling 

•  Locking hardware required 

Sliding •  Minimal deployment forces 

•  Positive locking position 

•  Potential bending stiffness non-
linearities 

•  Limited design history 

•  Potential contact surfaces 
galling 

Telescoping •  Compact packaging 

•  Minimal stiffness non-
linearities 

•  Requires interference fittings at 
deployment 

•  Potential contact surface galling 

•  Large deployment forces 

Inflatables •  Very compact packaging 

•  Near homogeneous deployed 
structure 

•  Advanced materials 
application 

•  Requires deployment pump and 
tubing 

•  Weight savings limited 

•  Expensive 

 

Strut/Tie Interaction 

The key to maintaining control over the surface once the antenna is deployed, as well 

as modifying the surface direction and accuracy, is the strut/tie interaction. Two 

approaches have been studied to manage the ties during deployment. 

•  Stowed Ties: By simply folding the ties along the struts (Figure 7-7), they can be 

released by force restraints, which are highly sensitive and as the loads reach a 

predetermined value, will release the ties. Elastic ties would save the need for a 

reel to take up the slack, but the disadvantage is extreme loads in the tension ties 

prior to deployment. This could be required for months. 
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Figure 7-7. Stowed Ties 

•  Reel Ties: Whether or not the ties are elastic, a reel could be used to take up the 

slack, changing the forces in the structure (Figure 7-8). This added hardware 

(potentially one motor per strut) increases complexity, weight, and therefore cost.  

 

Figure 7-8. Reel Ties 

A trade study for these approaches is presented below. 
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Table 7-3. Strut/Tie Trade Study 

Strut/Tie Interaction 
Design 

Advantages Disadvantages 

Stowed Ties (cord) •  High stiffness 

•  Minimal Creep 

•  Can only be used for 
planar ties due to 
elasticity needs 

Stowed Ties (elastic) •  Ease of stowage HIGH STOWAGE LOADS 

Reel Ties (cord) •  Clean, snag-free design REQUIRES ADDITIONAL 

HARDWARE 

Reel Ties (elastic) •  Stiffness constant 
adjustments 

COMPLEX DESIGN AND 

POTENTIAL 

STIFFNESS CREEP 

 

One design issue, which is critical to the mission success of this type of subsystem, is 

snag prevention. Since these antennas are deployed remotely, any potential snag could 

degrade or destroy the reflector surface. By using elastic ties, which are under prestress, 

they are less likely to catch on deploying struts. Similarly, the cord-ties must be stowed to 

ensure deployment success. This issue will be addressed further in Chapter 8. 

Deployment Scheme 

Figure 7-9 presents a potential deployment scheme. The requirements for this 

operation are primarily low shock load and continuous motion. Despite the inherent self-

deploying nature of tensegrity structures, they cannot be allowed to “spring” into position 

for fear of introducing high shock and vibration loading into the system. Once the system 

has deployed, changing tension in the ties, and therefore position of the struts, can alter 

surface accuracy. 
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Deployment and Surface Adjustment

ReleaseSeparationExtension

Deployment and Surface Adjustment

ReleaseSeparationExtension

 

Figure 7-9. Deployment Scheme 

Previous Related Work 

During the 1990s, tensegrity structures became increasingly applicable to space 

structure design, including space frames, precision mechanisms, and deployables. The 

leading names in this new field have been Motro (France), Wang (China), Pellegrino 

(England), and Skelton (United States). Motro [1992] edited a special edition of the 

International Journal of Space Structures, which was dedicated to tensegrity. Kenneth 

Snelson wrote an introductory letter for this edition describing his invention, Fuller’s 

contribution to its development, and the synergy between art and engineering. 

Motro’s work [1996] has predominantly focused on the stability of tensegrity 

structures, including force density, non-linear analysis and morphology. Despite his clear 
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focus on the engineering aspects of tensegrity, he has an excellent grasp of the artistic 

applications for this work. There is a clear development of stable, strut/tie structures from 

rectilinear (one dimensional), planar (two dimensional), through to spatial (three 

dimensional). The 3-3, octahedron tensegrity is an excellent example of a spatial 

structure. He has developed multiple tensegrity structure designs, which solve some of 

the toughest curved-surface problems for space structures. This class of structure requires 

extremely lightweight with excellent geometric stability and deployability. 

Wang [1998 a & b] has performed some of the best work on cable-strut systems as an 

extension of tensegrity. Reciprocal prisms (RP) and crystal-cell pyramidal (CP) grids, 

which technically exclude tensegrity systems, are the basis for his space frame 

applications. He developed a hierarchy of feasible cable-strut systems that include his 

new discoveries and tensegrity. Starting with triangular RP and CP simplexes, square, 

pentagonal, and hexagonal systems are developed to build cable domes, ring beams 

[Wang, 1998c], and double-layer tensegrity grids [Wang and Liu, 1996]. His work in the 

feasibility of these new applications is very important to space structure development. 

Dr. S. Pellegrino’s staff at the University of Cambridge has focused on the 

application of tensegrity to deployable space structures. Precision is of great concern with 

these kinematic systems, and recent system developments have required even higher 

precision from much lighter structures. By developing the mathematics for cable-

constrained nodes, You [1997] has been able to very accurately model the position of 

mesh antenna surfaces, including proven experimental results. Studies in the analysis of 

mechanisms [Calladine and Pellegrino, 1991], folding concepts for flexible but solid 

surface reflectors [Tibbalds et al. 1998], and shape control based on stress analysis 
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[Kawaguchi et al. 1996] have all greatly contributed to the state of the art. Infinitesimal 

mechanism analysis has led to prestressing conditions, which are critical to understanding 

deployable tensegrity structures. Their work with semi-solid antenna reflectors has solved 

some of the fundamental problems associated with deploying these delicate systems.  

Launch capacity (size and weight) has continually reduced in recent years, requiring 

multiple folding systems to provide larger and larger structures. Obviously, once these 

structures are deployed and in operation, the surface must be maintained to meet 

performance requirements. Pellegrino has led the community in predictive models for 

using stress profiles (and node position control) to ensure reflector surface positioning is 

maintained. 

Skelton and Sultan [1997] has seen the control of tensegrity structures as a new class 

of smart structures. This work has been applied to deployable telescope design [Sultan et 

al. (1999a)], where precision is orders of magnitude tougher than deployable antennas. 

He has also been instrumental in the development of integrated design [Sultan and 

Skelton, 1997] and reduction of prestress [Sultan et al. (1999b)], which are critical to 

solving position correction and dynamic control issues. 

Alabama Deployment Study 

The University of Alabama provided a deployment study for Harris Aerospace that 

suggested some alternative approaches to deployment. One such approach, gas-filled 

shock absorbers, would allow a self-deploying system like this tensegrity structure, to 

maintain a controlled deployment sequence. This study found that, based on the current 

design practices deployable space structures, the highest scoring actuator was the motor 

and lead screw combination. This is the most common scheme employed today. Alabama 
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also suggested that other forms of deployment control should be considered due to the 

high cost of space qualification for these subsystems. The viable options presented 

included: spiral springs, pneumatic cylinders, and compression springs. Since the 

tensegrity design provides the spring energy, a pneumatic design might be of use. The 

proportional velocity law governed this passive type design (damper). The energy 

equation is first order from stowage to deployment [Equation (1)], suggesting that a 

controlled sequence could be determined to ensure safe, low transient force deployment. 

0KxxC =+& (7-1)
 

Deployment Stability Issues 

The calculations for the 3-3 design, which were presented in Chapter 3 (Parallel 

Platform Results), suggest that there is a singularity at the tensegrity position. Figure 7-10 

presents a sequence from the Central Position, through the Aligned Position and the 

Tensegrity Position to the Crossover Position, where the struts intersect. The angle φ is 

equal to 0 at the Central Position and increases as the platform rotates counterclockwise. 

The angle α is equal to 0 in the aligned position. The former value is consistent with the 

CIMAR calculations. The later value is consistent with Kenner’s works.  

For the tensegrity design, the Central and Aligned Positions are not stable, as the ties 

are in compression. The Tensegrity Position is a stable critical point. This suggests that 

the design has instantaneous mobility, and any minor perturbation to the structure, while 

not necessarily causing instability, would provide sufficient energy to oscillate the 

antenna enough to degrade antenna performance. 
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Figure 7-10. Octahedron Configurations 

To improve the design and stability of the tensegrity structure, while not affecting the 

self-deployability, another set of ties is added between the vertex of the base and the 

opposite vertex of the platform (Figure 7-11). 
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Figure 7-11. Redundant 3-3 Structure 

This results in four ties at the end of each strut, versus the three in the original design. 

Again, the angles φ and α represent the works of CIMAR and Kenner, respectively. 

Figure 7-12 presents the rotations from the Central Position, through the Aligned and 

Tensegrity Positions, to the Crossover Position, where the struts intersect. 
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Figure 7-12. Redundant Octahedron Configurations 

The mathematics to calculate this “3-3+” structure is similar that for the 4-4 and 6-6 

structures, in that the Cauchy-Binet theorem is employed. Because there are now nine (9) 

connections between the platform and the base, the resultant J is a 6x9 matrix. 

(7-2)[ ]987654321 SSSSSSSSSJ
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Therefore, J
T

 is a 9x6 matrix. 

(7-3)
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As shown in Chapter 5, the quality index is calculated using the determinant of the 

combined matrices (det JJT). The ratios for a, b, and h, which represent the maximum 

quality index ratios, were also calculated. The significance of this design change is shown 

in the Figure 7-13. The quality index remains relatively constant as the platform rotates 

through 120o, varying a total of 25%, from a minimum of .75, to a maximum of 1.0. This 

amount of variation is negligible, as compared to the standard 3-3 design, and suggests 

that the fourth tie creates redundancy, avoiding the singularity at tensegrity. The structure 

is stable and practical. Note that for the standard 3-3 design, λ=0 at α=30o, as predicted 

by the calculations in Chapter 5. 

Further, there is a suggestion here that the articulation of a single strut could provide 

necessary antenna surface motions. Since the reflector surface for a deployable antenna is 

couple to the ends and midpoints of the struts, extension of these structural members 

could alter the surface of the antenna, thereby performing various or simultaneous 

mission tasks. If this were true, the same antenna reflector could be used to communicate 

with more than one location. 
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Figure 7-13. Quality Index vs. Rotation About the Vertical Axis 
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CHAPTER 8. 
STOWAGE DESIGN 

An efficient (minimized) stowage volume is an equally important requirement to the 

deployment and antenna functions previously presented. Typically, antennas are designed 

with extra folds along the length of the struts to reduce the launch vehicle shroud height 

requirement. For a standard “hub and spoke” design deployable antenna, an extra fold 

can be included at the midpoint of the spar (see section view in Figure 8-1). With this 

method, a 15-meter diameter antenna would have a stowed package volume of 

approximately 4-meter height and 4-meter diameter. This extra fold along the spar length 

greatly increases the material content, complexity of the structure, and touch labor to 

assemble the system. 

spokehub

15 m ~ 4 m

~ 4 m
spokehub spokehub

15 m ~ 4 m

~ 4 m

 

Figure 8-1. Current Deployable Antenna Design 

This chapter addresses the final goal for this research: a study of the tensegrity 

structure parameters. This approach will increase the efficiency of the stowed package, 

by maximizing the use of the spars for the antenna, and not just the structure. In Chapter 

6, at the maximum 6-6 quality index (Central Position), the height h was equal to
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approximately 0.6 times a. The base dimension b was equal to approximately 1.2 times a. 

Modifying the a/b and a/h ratios would reduce the length of the spars. This would 

improve the efficiency of the structure by maximizing the deployed structure (tip to tip) 

diameter for a minimized strut length. 

Minimized Strut Length 

As presented in Chapter 7, the typical launch vehicle (Extended Delta Class) shroud 

could not accommodate the baseline, 15-meter diameter deployed tensegrity antenna, 

wherein the strut length is 19 meters. The following is a mathematical trade analysis 

between the size of the base (b) as defined in Chapter 5 (6-6 Design), the diameter of the 

deployed surface (2a for the 6-6 design), and the strut length (l). The purpose of this 

analysis is to design a stable structure while minimizing the strut length for the 15-meter 

antenna. The 6-6 design is the basis for the deployable design. Table 8-1 presents the 

geometric relationships for the three candidate structures (3-3, 4-4, and 6-6). 

Table 8-1. The Three Tensegrity Structure Designs Considered 

Design # of Struts # of Ties (total) Tip-to-Tip Diameter 

3-3 3 9 a  

4-4 4 12 a2  

6-6 6 18 a2  

 

3-3 Optimization 

The tensegrity position for the 3-3 structure, as defined in Chapter 7, is at φ=90o and 

α=30o. Despite any changes in the a, b, or h values, tensegrity structures maintain the 

same rotation angle relative to the Central Position (Chapter 7). This characteristic of 
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tensegrity, related to the static force balance in each strut. This position is uniquely in a 

singularity at this equilibrium position. Unfortunately, the quality index approaches zero 

at the tensegrity position. This is known as a “stable critical point”, which means that the 

structure has instantaneous mobility (i.e. small forces can produce motion), but because 

the energy is at a minimum in this position, the structure is stable. The quality index is 

zero because the determinant (det J) becomes zero. To determine this mathematic trade, 

the Central Position will be analyzed and the results hypothesized for the tensegrity 

structures. 

For the 3-3 structure, the Central Position is defined as φ=0o or α=-60o. As presented 

in Chapter 5, the determinant of the J matrix and the determinant of the maximum of this 

matrix (Jm) are 
3
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As the ( )λ
⇒0b
lim , which means that the base reduces to a point, the Equation 1 reduces to 
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Rooney et al. [1999] refers to this design as the “tensegrity pyramid”.  

As a first-design, the ratio a/h=1 is chosen. This further reduces the equation to 
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which is an acceptable quality index (optimum is λ=1.0). But to define a class of 

structures with acceptable Quality Indices, a new value γ is introduced. This value, 
a
h=γ  

or ah γ= , represents the ratio of the side of the platform relative to the height of the 

structure. This changes the equation to 
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and taking the derivative 
γ∂

∂
 of the denominator, the maximum values for the quality 

index (the denominator equals zero) is found at 58.0
3

1 ≈=γ . Figure 8-2 presents the 

plot of the quality index (λ) vs. the ratio values (
a

h=γ ). At this value of γ, the quality 

index has a relative value of 1.0. 
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Figure 8-2. 





 =γλ 1

h

a
  vs.  

Although there appears to be a mathematic benefit to designing a deployable 

platform, such as a tensegrity structure, with a base width of zero (hence a point) there 

are practical engineering limitations. The most obvious one is that the lines of the ties and 

the struts approach each other. This reduces the structure’s stability to zero. As the ties 

that define the base approach zero length (b=0), the ties that define the platform cease to 

be in tension. This is due to the connecting ties becoming collinear with the struts, and 

therefore ceasing to create an off-axis moment (see Figure 8-3). Additionally, it is 

impractical to connect an antenna structure at a point, as moment loads would approach 

infinity. 
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b<a b=>0 b=0b<a b=>0 b=0
 

Figure 8-3. Reduction of the Base to Zero 

Based on these observations, a compromised geometry is necessary. To this end, the 

base should be minimized, and the 
a
h=γ  ratio chosen for the maximized quality index. 

Table 8-2 presents the results of three choices of Base Planar Tie length (b) with 

maximized quality index. Figures 8-4, 8-5, and 8-6 present the curves for the b=
2
a

, 
4
a

, 

and 
8
a

 cases, respectively. 
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Table 8-2. Quality Index for b=
2
a

, 
4
a

, and 
8
a

 Cases 

b J  hm mJ  λ γ at λmax 

2

a

 

3

2a

h

h4

1
32

33








 +

 
a5.0

2

a =  3
3

a2.0
32

a33 ≈  
3

4

1

1









γ+

γ

 
0.50 

4

a

 

3

2a

h

h48

13
256

33








 +

 a52.0a
34

13 ≈

 

3
3

a02.0
13416

a27 ≈  
3

48

13
72

3913









γ+

γ
 

0.52 

8

a

 

3

2a

h

h192

57
2048

33








 +

 

a55.0
8

a19 ≈

 

3
3

a002.0
19608

a33 ≈

 

3

192

57
64

1919









γ+

γ
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Figure 8-4. λ vs. γ 





 =

2

a
b  
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Quality Index (a/4)
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Figure 8-5. λ vs. γ 





 =

4

a
b  
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Figure 8-6. λ vs. γ 





 =

8

a
b  
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The conclusion drawn by this analysis of the base size is that there is no appreciable 

improvement by making the base larger or smaller. That is, by using just the stability of 

the structure (quality index) as the decision criterion. Stern [1999] developed a series of 

equations to describe the forces in the ties as the platform (a) and base (b) dimensions are 

varied. Simply put, the ratio of a/b changes linearly with the force in the ties. In other 

words, if the base dimension is reduced by 50%, the force in the base ties increases by 

50%. Based on this research, it would be impractical to reduce the base dimension to a/8, 

as the forces would increase an order of magnitude. Therefore, the ratio a/4 was chosen 

because it reduces the strut lengths, provides a sufficient base dimension to attach the 

antenna, and still does not increase the tie forces too greatly. 

As presented in Chapter 7, additional ties can be included in the 3-3 design, thereby 

improving the quality index. For the 4-4 and 6-6 structures, the index approaches 1.0 for 

virtually any position. Figure 8-7 presents the design for the 3-3 structure. In this case, 

the λ varies only 25% from 0.75 to 1.0 (as shown in Figure 7-13). 

(a) (b) (c)  

Figure 8-7. Reduction of the Base to Zero (Redundant Octahedron) 
a) b<a; b) b=>0; c) b=0 
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4-4 Optimization 

As presented in Chapter 4, the Jacobian (J) for the 4-4 structure is a 6x8 matrix, and 

an understanding of the Cauchy-Binet Theorem aids in obtaining the quality index. As 

previously presented, the numerator for the quality index (λ) reduces to 

( )3222

333
T

h2bab2a

hba232
JJdet

++−
= . The denominator represents the maximum 

possible vale for the numerator was found by using h=0. This value is 

( ) 2
3

22

33
T
mm

bab2a

ba2
JJdet

+−
= . The height (h), which is used to find the 

denominator, is ( )22
m bab2a

2

1
h +−= . Again, following the work in Chapter 4, the 

quality index is therefore,  

(8-5)( )
( )3222

2

3
223

h2bab2a

bab2ah216

++−

+−=λ

 

As the ( )λ
⇒0b
lim  this reduces to 

(8-6)( )322

33

h2a

ha216

+
=λ

 

By using 
a
h=γ , the equation reduces further to 

(8-7)3332

3

1
2

216

a

h
2

h

a

216

a

h
2a

h216









γ

+γ

=







 +

=











+

=λ
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with a maximum λ at 71.0
2

1 ≈=γ . Figure 8-8 plots λ vs. γ. 
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Figure 8-8. λ vs. γ 





 =γ

a

h
 for the Square Anti-prism 
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Figure 8-9. λ vs. γ 





 =

2

a
b  for the Square Anti-prism 



 

 

86 

Similarly, the equations for b equals 
2
a

, 
4
a

, and 
8
a

 are presented in Table 8-3. Figure 

8-9 presents the first λ vs. γ plot. The second and third cases are similar, but it is obvious 

that the γ value at λmax changes significantly between a/2 and a/8. 

Table 8-3. γ at b=
2
a

, 
4
a

, and 
8
a

 

b λ  (γ=h/a) γ at λmax 

2

a
 

3

2
3

2

1

4

51
2

2

1

4

5
216





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
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

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




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2
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4

5 2
1

≈
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


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


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
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6-6 Optimization 

The 6-6 tensegrity design is the basis for this new class of deployable antenna 

structures. The calculations are similar to those for the 4-4 to solve the 6x12 J matrix. 

The numerator for λ, taken from Chapter 4, is ( )3222

333
T

hbab3a

hba54
JJdet

++−
= . The 

denominator, which is found by using h equals zero is 
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( ) 2
3

22

33
T
mm

bab3a8

ba54
JJdet

+−
= . This h value is ( )22

m bab3ah +−= . The 

quality index is therefore,  

(8-8)( )
( )3222

2
3

223

hbab3a

bab3ah8

++−

+−=λ

 

As the ( )λ
⇒0b
lim  this reduces to 

(8-9)( )322

33

ha

ha8

+
=λ

 

By using 
a

h=γ , the equation reduces further to 

(8-10)3332

3

1

8

a

h

h

a

8

a

h
a

h8









γ

+γ

=







 +

=








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
+

=λ

 

with a maximum λ at 1=γ . Figure 8-10 plots λ vs. γ. 

Similarly, the equations for b equals 
2
a

, 
4
a

, and 
8
a

 are presented in Table 8-4. Figure 

8-11 presents the λ vs. γ plot for the
2
a

 case. The second and third cases are similar. 

Again, the γ at λmax values vary greatly as b is reduced from a/2 to a/8. Keeping the work 

of Stern [1999] in mind to minimize the tie forces, b=a/4 is chosen as a compromise. 

Using this chosen ratio, h/a=0.79, b/a=0.25, and therefore, b/h=0.32. 
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Figure 8-10. λ vs. γ 





 =γ

a

h
 for the Hexagonal Anti-prism 
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Figure 8-11. λ vs. γ 





 =

2

a
b  for the Hexagonal Anti-prism 
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Table 8-4. λ and γ for b=
2

a
, 
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a
, and 
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CHAPTER 9. 
CONCLUSIONS 

The requirements process introduced in Chapter 1 comes from a history defined by 

predictive engineering and unfortunate system failures. The participating hardware 

development companies have been greatly aided over the years by the work of analyst 

such as James R. Wertz. This process is based on problem definition and end vision, with 

a activity definition to reach the end goals. Space structures in general, and precision 

subsystems such as deployable antennas in particular, have become mired in this 

predictive process. The critical need for these subsystems has driven the development 

process to be extremely conservative, building larger, heavier, and stronger structures 

than are necessary to meet the mission requirements. 

This work has applied the theories of some of the greatest minds in mathematics 

(Ball, Plücker, etc.) and engineering (Kenner, Hunt, etc.) to the simple and elegant 

architectural designs of Snelson and Fuller. The premise for embarking on this work was 

that architecture, by definition, leans more toward art than engineering, but combines 

form with function. Pearce (1990) accurately presented the theory whereby nature abhors 

inefficiency, requiring everything from dragonfly wings to cracked mud to find a 

minimal potential energy. It is this confidence in the efficiency of nature and its obvious 

tie with architecture which defines this work. 

In Chapter 3, a geometrical stability criterion measured by the quality index was 

introduced as defining an acceptable design. Within this stability, the structure should 



 

 

91 

deploy (preferably self deploy) and stow to allow placement in the space environment. 

After development of the 3-3, 4-4, and 6-6 parallel structures, this theory was applied to 

the tensegrity position. It is most interesting to note that this position happens to occur 

when the quality index is zero. This is known as a “stable critical point” in Chaos Theory. 

In this position, the structure has instantaneous mobility, whereby small perturbations can 

create small deflections of the antenna. Adding extra connecting ties between the 

“platform” and the “base” nullifies the instant mobility and provides a very stable 

structure. Further analysis proved that the antenna surface of this class of structures can 

be commanded to move on a screw whose axis is perpendicular to the surface. This 

happens to be a useful function for antenna surfaces, allowing them to address various 

feed centers (located at the focal points of the parabola). 

Applying Tensegrity Design Principles 

The idea for applying tensegrity design to deployable antennas has been suggested 

numerous times over the last two decades, but this work has addressed the mathematics 

necessary to prove its stability and therefore its applicability. The 6-6 structure has been 

chosen to provide enough radial spars on which to “hang” the reflective surface of the 

antenna. Again, possible advantages and disadvantages of the instantaneous mobility 

issue at the tensegrity position warrant further investigation. 

An improvement was presented for these designs with additional ties above the basic 

tensegrity design (two ties from each base vertex). A mathematic analysis of the quality 

index for these augmented 3-3 and 4-4 structures showed a marked improvement in the 

indices. For the 6-6 design, the basic tensegrity design with 12 platform/base connections 
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(Figure 9-1a) is augmented to a total of 18 (Figure 9-1b), 24 (Figure 9-2a), 30 (Figure 9-

2b), and 36 (Figure 9-3). 

(a) (b)
 

Figure 9-1. Hexagonal Anti-prism Designs 
(a) Basic Tensegrity Design (12 platform/base connections); (b) Augmented Tensegrity 

Design (18) 

(a) (b)
 

Figure 9-2. Augmented 6-6 Hexagonal Anti-prism Designs 
(a) Augmented Tensegrity Design (24); (b) Augmented Tensegrity Design (30) 
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Figure 9-3. Augmented 6-6 Hexagonal Anti-prism Design with the Maximum (36) 
Number of Platform/Base Connections 

As presented in Chapter 7, the augmented 3-3 index (λ9) only varies between .75 and 

1.0 (Figure 9-4), with three minimum potential energy position located symmetrically 

about the Central Position (basic platform design position). Note that only one additional 

tie per vertex is required, increasing the number of platform/base connections from 6 to 9. 

The quality index (λ16) for the 4-4 with four ties between each base vertex and the 

corresponding platform vertices, the value varies less than 5% between the maximum and 

minimum. Again, the number of minimum potential energy nodes is equal to the number 

of sides in the geometry, and these nodes are symmetrically placed about the Central 

Position. The point design will use one set of additional ties between the “base” and the 

“platform, as shown in Figure 9-1(b). This will simplify the calculations, but still improve 

the stability of the structure above that of for the basic tensegrity design. 
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Figure 9-4. A Comparison of the λ vs. φ Curves for the Basic (λ6) and Augmented (λ9) 
Tensegrity Designs for the Octahedron 
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Figure 9-5. A Comparison of the λ vs. φ Curves for the Basic (λ8) and Augmented (λ16) 
Tensegrity Designs for the Square Anti-Prism 
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Antenna Point Design 

As presented in Chapter 7, a 15-meter, tip-to-tip design meets the needs of current 

systems. For this research, this dimension is increased to 16-meters, providing sufficient 

structure to suspend a 15-meter diameter parabolic surface within. Chapter 8 has shown 

that the ratios between a, b, and h can be varied to improve the efficiency and utility of 

the spars while ensuring the stability (quality index) is sufficient to form a usable 

structure. The design that can meet the requirements of the space community, while 

improving the subsystem efficiency is presented in Figure 9-6. To simplify the design, 

these parameter ratios were altered slightly to h/a=0.50, b/a=0.25, and b/h=0.50. This 

design maintains the necessary b/a ratio, while only altering the h value slightly to flatten 

the “cup” of the antenna. This applies to the f/d  ratio to be addressed later. 

This chosen design is only one of a family of choices which include various 

numbers of extra ties, a/b and h/a ratios. The assumption is, to avoid the instantaneous 

mobility issue for tensegrity-class structures; an additional set of ties would be included. 

Nominally this would be one set, connecting each base vertex with its corresponding 

platform vertex above. 

Figure 9-7 presents the baseline design. Note that the reflector surface, suspended 

within the strut framework could accommodate a focus to diameter (f/d) ratio of 

approximately 0.3. This value is typical for deployable antennas in service today. As 

noted in the figure, the distance from the parabola vertex to the edge of the antenna 

structure is nominally 2-meters. For a15-meter diameter parabolic reflector surface, the 

focal point (for an f/d=0.3) would be a total of 3.75-meters above the parabola vertex. 

Therefore, the focal point is located at 1.75-meters above the edge of the structure. This is 
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significant because additional structure may be needed to place the feed electronics for 

this antenna. What changes a hexagonal anti-prism to the truncated structure on which the 

6-6 tensegrity structure is based in a “hat” structure above and below the platform and 

base. This “extra” structure, above what is being considered the edge of the antenna 

structure, could be used for this feed support structure. 

16 m.
(2a)

4 m.
(2b)

4m.
(h)

16 m.
(2a)

4 m.
(2b)

4m.
(h)

 

Figure 9-6. The Proposed 6-6, Hexagonal Anti-prism, Deployable Tensegrity Antenna 
Design 
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Figure 9-7. The Relationship Between the Antenna Structure Envelope and the Focal 
Point Location 
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Patent Disclosure 

Harris Corporation, Melbourne, Florida, in conjunction with the University of 

Florida, Gainesville, Florida, has filed a patent disclosure on the application of tensegrity 

structures to self-deploying space antennas. The concept of using tensegrity of structures, 

even space structures, has been suggested in technical literature over the last two decades. 

The specifics for applying tensegrity, the concept of self-deployment, and the 

mathematics, which proves its value to the design community, is the basis for this patent. 

This new approach has the potential to radically change the deployable structures market 

place, reducing cost, weight, and complexity, therefore improving the subsystem 

efficiency. 

Future Work 

Although current deployable antenna design approaches meet most of the goals 

necessary for space flight, the cost and development time are still much too great. This 

research, which addresses the application of tensegrity structures to these subsystems, has 

proven both stability and possible special motions (screw theory based), which would 

meet the mission needs. Future work in this area would address these special motions, 

particularly as they affect the reflector surface, which is suspended between the struts. 

Additionally, a trade between strut deployment schemes relative to subsystem stiffness 

should be performed to benefit from the advances over the last decade in inflatable 

structures. Of all the subsystems necessary for space missions, deployable antennas are 

potentially the least package-efficient.
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